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The Dynamic Behaviour of Functionally Graded 
Material Plates Using Different Homogenization 

Schemes  
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Abstract— Functionally graded materials belong to a class of advanced materials characterized by the variation in properties as the 
dimension varies (usually along the thickness). The overall properties of FGM can be varied according to our needs, thus one of the main 
advantages of such a material is that it can be tailored specifically for serving a particular function that makes it unique from any of the 
base materials used in its synthesis. In the present project, a study on the dynamic behaviour is developed using Reddy’s Third Order 
Shear Deformation Theory. The results thus obtained are compared with other standard results and thus validated. Also, the effect of 
various homogenisation schemes on the dynamic behaviour and its comparison with available results is carried out. 

Index Terms— Bending analysis, Buckling analysis, Functionally graded materials, Homogenisation schemes, Natural frequency, Plates, 
Shear deformation theories, Transverse shear, Vibration.  

——————————      —————————— 

1 INTRODUCTION                                                                     
unctionally graded materials (FGM) are those materials 
that are synthesised for a specific purpose by the gradual 
mixing of two or more different materials so that the prop-

erties of each of the base materials can be used according to 
the external environment. Unlike laminated composite materi-
als, the variation of properties is as smooth as possible thus 
avoiding the phenomena of stress concentration which could 
lead to the delamination at the interface. They are thus highly 
anisotropic materials engineered with great precision in gradi-
ents of composition and structure to adapt to various purposes 
and to have definite properties in preferred orientation. Vari-
ous mechanical properties like Poisson's ratio, Young's modu-
lus, shear modulus and material density can be varied in any 
preferred direction using different laws for spatial distribu-
tion. The concept of FGM was first introduced in Japan in 1984 
during a space plane project. Where a combination of materi-
als was required that would form a thermal barrier capable of 
withstanding a surface temperature of about 2000 K and a 
temperature gradient of the order 1000 K across a 10-mm sec-
tion. Recently this topic has gained much attention is Europe-
an countries. 

There is a vast potential for the application of such a mate-
rial as we can control the material properties and thus build a 
material according to our requirement. These materials find 
their applications in fields of aerospace, medicine, defense, 
energy, optoelectronics etc. thus because of this the area of 
analysis of such material has attracted a lot of attention of 
many researchers in recent time. 

Kerala, India. E-mail: shashisubha@gmail.comConcerning to the anal-

ysis and applications of such materials, one can find several 
published works focused on FGM structures. Reddy presented 
a theoretical formulation based on Navier’s solutions of rec-
tangular plates, and on third-order shear deformation theory 
(TSDT) to analyze through-thickness functionally graded 
plates. A dual-phase material was assumed to be isotropic, 
having a distribution that varies through-the-thickness accord-
ing to the exponent power law. 

  In 1998, J. N. Reddy & C. D. Chin had done the thermo-
mechanical analysis of functionally graded cylinders and 
plates. The dynamic thermo-elastic response of functionally 
graded cylinders and plates is studied. Thermomechanical 
coupling is included in the formulation, and a finite element 
model of the formulation is developed. The heat conduction 
and the thermos-elastic equations are solved for a functionally 
graded axisymmetric cylinder subjected to thermal loading. In 
addition, a thermos-elastic boundary value problem using the 
first-order shear deformation plate theory (FSDT) that ac-
counts for the transverse shear strains and the rotations, cou-
pled with a three-dimensional heat conduction equation, is 
formulated for a functionally graded plate. Both problems are 
studied by varying the volume fraction of a ceramic and a 
metal using a power law distribution.  In 2004, Tongsuk and 
Nukulchai, studied some elasticity problems based on a Mov-
ing Kriging (MK) interpolation in the construction of shape 
functions for the element-free Galerkin method. They men-
tioned that the key of the MK interpolation is its interpolation 
property that allows for exact imposition of essential bounda-
ry conditions, similar to the conventional FEM. A similar work 
was done by Chen and Liew and Regarding meshless meth-
ods, it is important to highlight the work presented by Ferreira 
et al. in which it is proposed the use of multi-quadric radial 
basis functions (RBF) to study the deformations of a simply 
supported functionally graded plates modelled by the TSDT. 
In 2006, Serge Abrate considered the problems of free vibra-
tions, buckling, and static deflections of FGM plates in which 
material properties varied through the thickness and showed 
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that, all other parameters remaining the same, the natural fre-
quencies of functionally graded plates are proportional to 
those of homogeneous isotropic plates and that the propor-
tionality constant can be easily be predicted. In 2007, Hiroyuki 
Matsunaga conducted a Free vibration and stability of func-
tionally graded plates according to a 2-D higher-order defor-
mation theory where the material property was modelled ac-
cording to the power-law distribution in terms of the volume 
fractions of the constituents. Also in recent studies done by 
Kennedy, the FG plates whose material properties varies con-
tinuously through there thickness are modelled as exactly 
equivalent plates composed of up to four isotropic layers each 
model based on CLPT, FSDT and HSDT respectively.  In 2012, 
Loja et al. studied the influence of using different homogenisa-
tion schemes, namely the schemes due to Voigt, Hashin–
Shtrikman and Mori–Tanaka, on the prediction of bounds for 
the average material properties of FGM particulate composite 
structures. In 2015, G.M.S. Bernardo et al. performed a study 
on the structural behavior of FGM plates static and free vibra-
tions analyses by considering a continuous variation of their 
phases and thus of their properties, and by considering a dis-
crete stacking of a sufficient number of layers, in order to en-
sure a less abrupt variation profile of their properties based 
either on a meshless method or on different approaches based 
on the finite element method. A comparative study of the per-
formance and adequacy of the developed models is carried 
out through a set of illustrative cases focused on the study of 
static and free vibrations behavior of plate structures. In the 
present study, the dynamic behavior of FGM plates has been 
conducted and compared that is modelled using different ho-
mogenization schemes namely Voigt Scheme, Mori-Tanaka 
Scheme, Sigmoid Function and Exponential Function respec-
tively. Its dynamic behavior has been studied for different 
aspect ratios (a/b) from 0.5 to 3, side-thickness ratio (a/h) 
from 1 to 20 and power exponent values from 0 to infinity. All 
calculations has been done based on J.N.Reddy’s Third Order 
Shear Deformation Theory. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Schematic representation of a typical FGM plate. 

 

2 MATERIAL PROPERTIES GRADATION 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.2. FGM geometry 

The material properties gradation in FGM is assumed to 
follow power law function, exponential function etc. 
1. Exponential law: This law is generally adopted when we 

deal with the fracture mechanics problems. According to 
this law the material property in P(z) in a specific direc-
tion is given by, 

 
 
 
 
Suffix ‘t’ and ‘b’ re-presents the top and bottom surface of 
the plate respectively, ‘h’ is the thickness of the plate and 
‘z’ is the specific location along the thickness direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3. Variation of Young’s Modulus with respt to non-dimensional 

thickness parameter according to Exponential Function  

2. Power Law: It is observed from the open literature that 
this particular power law behavior is most used by many 
researchers. If FGM plate of uniform thickness ‘h’ is used 
for the analysis then according to this law, the material 
properties P(z) in a specific direction (along ‘z’) can be de-
termined by,  
 
 
It is noted that material properties are dependent on the 
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volume fraction ‘Vf’ of FGM which follows the power-law 
as, 
 
 
where 'n' is the volume fraction exponent. Suffix ‘t’ and ‘b’ 
re-presents the top and bottom surface of the plate respec-
tively. The power law exponent ‘n’ can vary from ‘0’ to ‘∞’ 
that show the transition of material from fully ceramic to 
metallic phase, respectively. 
 

3. Sigmoid Function: Power-law function and exponential 
function are commonly used to describe the gradation of 
material properties of FGMs but in both functions, the 
stress concentrations appear in one of the interfaces in 
which the material is continuous but changing rapidly. To 
overcome this, Chung and Chi, in their work suggested 
the use of another law called sigmoid law which is the 
combination of two power-law functions. This law in not 
independent law, it consists of two symmetric FGM layers 
having power-law distribution. 
They also suggested that by the use of a sigmoid law the 
stress intensity factors of a cracked body can be reduced 
to a certain extend. According to this law, the two power-
law functions are defined by, 
 
 
 
 
 
 
 
 
 
 

 

 
Fig.4. Variation of Young’s Modulus with respt to non-dimensional 

thickness parameter according to Sigmoid Function 

  

3 EFFECTIVE MATERIAL PROPERTIES 
(HOMOGENISATION) OF FGM 

The effective properties of macroscopic homogeneous compo-
site materials can be derived from the microscopic heteroge-
neous material structures using homogenization techniques. 
Several models like rules of mixture (Voigt Scheme), Hashin–
Shtrikman type bounds, Mori–Tanaka type models, and self-
consistent schemes are available in literature for determination 
of the bounds of the effective properties. Voigt scheme and 
Mori–Tanaka schemes are generally adopted in analysis of 
functionally graded material plate and structure by most re-
searchers.  
Various methods to determine the effective properties of the 
plate are: 
1. Rule of mixtures: It is similar to the power law as dis-

cussed in the previous section. 
 
 
 

2. Mori-Tanaka Scheme: This method method works well 
for composites with regions of the graded microstructure 
have a clearly defined continuous matrix and a discontin-
uous particulate phase. The matrix phase is assumed to be 
reinforced by spherical particles of a particulate phase. 
The subscript ‘e’ denoted the effective value of a particu-
lar material property where as ‘c’ and ‘m’ denoted that of 
ceramic and metallic constituents respectively. The Bulk 
modulus(K) and Shear modulus (μ) is calculated as given 
below: 
 
 
 
 
 
 
 
 
 
 
Where,  
 
 

 
 
Young’s modulus (E), Poisson’s ratio (υ) can be calculated 
from them as given below. 
 
 
 
 
 
 

3. Voigt Scheme: Voigt model has been adopted in most 
analyses of FGM structures. The advantage of Voigt 
method is that it is easy to calculate and can be considered 
as the upper and lower bounds for the effective elastic 
properties of a heterogeneous material. The effective ma-
terial properties Pf, like Young's modulus Ef, Poisson' ra-
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tio νf, thermal expansion coefficient αf, and thermal con-
ductivity Kf may be expressed as, 
 
 
where Pt and Pb denoted the temperature-dependent 
proper ties of the top and bottom surfaces of the plate, re-
spectively. Vm and Vc and are the metal and ceramic vol-
ume fractions which can be expressed by, 
 
 
If volume fraction Vm is assumed to follow a simple pow-
er law as 
 
 
 
 
where ‘n’ is the volume fraction index and takes only pos-
itive values then different effective properties can be giv-
en as, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.5. Variation of Young’s Modulus with respt to non-dimensional 
thickness parameter according to Mori-Tanaka Scheme 

 

 

Fig.6. Variation of Young’s Modulus with respt to non-dimensional 
thickness parameter according to Voigt Scheme 

4 PLATE KINEMATICS 
The analysis of composite structures is one of the most prom-
ising research fields of the last decades. Accurate structural 
and dynamic analyses are required to design various structur-
al parts of aerospace, mechanical, naval as well as civil con-
structions to find the behavior of the structural response in 
real time. Numerous plate theories have been developed by 
the researchers to analyze the composite plates and shells and 
out of them, the most commonly used ones are given below. 
One of the major classification is the classical plate theory and 
shear deformation theories. Transverse shear stress compo-
nents are neglected in the classical plate theory whereas it is 
included in the shear deformation theories. 

 
4.1 Third Order Shear Deformation Theory(TSDT)  

The free vibration analysis and stability analysis has been 
carried out using Reddy’s Third Order Shear Deformation 
Theory. The displacement function used are as given below: 

 
where,  
‘u’, ’v’, ’w’ denotes the displacement variables. ‘u0’, ‘v0’, 

‘w0’ are the in-plane displacements with respect to a reference 
plane,’w0’ is the out-of-plane displacements with respect to 
the reference plane. ‘𝜙x’, ‘𝜙y’, ‘ɵx’,  ‘ɵy’ are the rotation of 
normal with respect to mid-surface of the plate. 
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Fig.7. Tranverse shear deformation of a plane according to various 
plate theories  

 

5 ANALYSIS 
Analysis was done to calculate natural frequencies and buck-
ling loads for different ‘a/h’, ‘a/b’ and ‘n’ values. This can be 
done based on Reddy’s TSDT for different homogenization 
schemes. The Poisson’s ratio can be considered constant or 
varying. Using TSDT we can generate stiffness matrix and 
mass matrix for natural frequency calculation. And we can 
assume a geometric stiffness matrix for calculation of buckling 
load. 

 
5.1 Natural Frequency 

For free vibration problems, the equations of motion can be 
expressed as the following eigenvalue problem: 

([K] – Ω2 [M]) {U} = {0}. 
where matrix [K] denotes the stiffness matrix which may 

contain the terms of the in-plane stresses and matrix [M], the 
mass matrix and {U} is the displacement vector correspond-
ing to each node within the plate. 

The square root of lowest value is taken as the natural fre-
quency in each case. 
 
5.2 Buckling Load 
For stability problems, the natural frequency vanishes and the 
stability equation can be expressed as the following eigenval-
ue problem: 

([K] – N [kg]) {U} = {0}. 
where matrix [K] denotes the stiffness matrix and matrix [kg], 
the geometric-stiffness matrix due to the in-plane stresses. 

The lowest value is taken as critical buckling load. 

6 VALIDATION 
A validation study has been done for both natural frequency 
and buckling loads with available literature. The ceramic-
metal material comprises of Alumina and Aluminiium. The 
material properties are given in table 1. 

 
Table.1. Material properties considered.  

 

Type Name 
Young’s 
Modulus 
E (GPa) 

Poisson’s 
ratio, υ 

Mass 
Density, 

ρ 
(Kg/m3) 

Ceramic Alumina 380 0.3 3800 
Metal Aluminium 70 0.3 2707 

 
6.1 Natural Frequency 
The natural frequency obtained using Reddy’s TSDT has been 
validated. The result is made dimension-less using following 
expression,  
 
 
 
where ‘Ω’ is the dimension-less natural frequency, ‘ω’ is the 
natural frequency, ‘h’ is the plate thickness, ‘ρc’ the mass den-
sity and ‘Ec’ is the young’s modulus of the ceramic material. 

 
Table.2. Natural frequency validation for different ‘n’ and ‘a/h’ values 

for square (Al2O3/Al) FGM plate. 
 

Voigt Scheme 

a/h 

Power Exponent, n 

0 0.5 1 4 

(1) [PW] (1) [PW] (1) [PW] (1) [PW] 

5 2.11 1.98 1.805 1.78 1.631 1.627 1.4 1.3 

10 0.577 0.54 0.49 0.483 0.441 0.441 0.382 0.36 

20 0.148 0.138 0.125 0.124 0.113 0.113 0.098 0.093 

 
[PW] -Present Work,  (1) - G.M.S. Bernardo et al. (2015) [3] 
 

 
Fig.8. Variation of naural frequency w.r.t different ‘n’ values. 
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6.2 Buckling Load 
The buckling load obtained using Reddy’s TSDT has been val-
idated. The result is made dimension-less using following ex-
pression, 

 
 
 
where ‘N’ is the dimension-less natural frequency, ‘Ncr’ is 

the natural frequency, ‘h’ is the plate thickness and ‘Ec’ is the 
young’s modulus of the ceramic material. 

 
Table.3. Uniaxial Buckling Load validation for different ‘n’ and ‘a/h’ 

values for square (Al2O3/Al) FGM plate. 
 

Voigt Scheme 

n [Work] 
a/h 

2 5 10 

0 
(1) 0.36 0.114 0.0338 

[PW] 0.32 0.118 0.034 

0.5 
(1) 0.25 0.0757 0.0221 

[PW] 0.23 0.0781 0.0223 

1 
(1) 0.19 0.0583 0.017 

[PW] 0.18 0.06 0.0171 

4 
(1) 0.1 0.0372 0.0113 

[PW] 0.1 0.0386 0.01138 

10 
(1) 0.09 0.0318 0.0099 

[PW] 0.07 0..0326 0.00994 
 
[PW] -Present Work, 
(1)- H. Matsunaga. et al (2008) [15] 
 

Fig.9. Variation of uniaxial buckling load w.r.t different ‘n’ values. 
 

7 COMPARATIVE STUDY 
A comparative study has been carried out for the results ob-
tained for the FGM plate made of same materials but mod-
elled by different homogenization schemes for different power 
exponent values, ‘n’ from 0 to infinity, side-thickness ratio, 
‘a/h’ from 1 to 20 and aspect ratio, ‘a/b’ ranging from 0.5 to 3 
respectively. 
Materials given in table 1 is used for the comparative study. 
The natural frequency, uniaxial and biaxial buckling loads 

obtained for different FGM plate models are considered for 
the study. The FGM plate modelled using Voigt Scheme, Mori-
Tanaka Scheme, Sigmoid function and Exponential Function 
are named as V-FGM, M-FGM, S-FGM and E-FGM respective-
ly. The top surface is ceramic rich and the bottom surface is 
metal rich. The plate is of uniform thickness, and simply sup-
ported on all four edges. 

 
7.1 Natural Frequency 
The natural frequency obtained using Reddy’s TSDT has been 
validated. The result is made dimension-less using following 
expression,  
 
 
 
where ‘Ω’ is the dimension-less natural frequency, ‘ω’ is the 
natural frequency, ‘h’ is the plate thickness, ‘ρc’ the mass den-
sity and ‘Ec’ is the young’s modulus of the ceramic material. 

 
Table.4. dimensionless natural frequency for different power exponent 

‘n’ for different homogenization schemes. 
 

n V-FGM M-FGM S-FGM E-FGM 

0 0.1975 0.1975 0.1760 0.1423 

0.5 0.1780 0.1550 0.1698 0.1423 

1 0.1628 0.1438 0.1630 0.1423 

5 0.1278 0.1200 0.1480 0.1423 

10 0.1207 0.1140 0.1460 0.1423 

50 0.1070 0.1030 0.1447 0.1423 

∞ 0.0980 0.0980 0.1447 0.1423 

 
Fig.10. Variation of dimensionless natural frequency w.r.t ‘n’ values for 

a square FGM plate. 
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Table.5. dimensionless natural frequency for different aspect ratios 
‘a/b’ for different homogenization schemes. 

 
a/b V-FGM M-FGM S-FGM E-FGM 
0.5 0.0916 0.0844 0.1004 0.0926 
1 0.1407 0.1290 0.1549 0.1423 

1.5 0.2150 0.196 0.2385 0.2179 
2 0.3090 0.2795 0.3440 0.3124 

2.5 0.4150 0.3735 0.4653 0.4200 
3 0.5306 0.4746 0.5976 0.5367 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.11. Variation of dimensionless natural frequency w.r.t ‘a/b’ values. 

 
Table.6. dimensionless natural frequency for different side-thickness 

ratios ‘a/h’ for different homogenization schemes. 
 

a/h V-FGM M-FGM S-FGM E-FGM 
1 1.5832 1.3812 1.8244 1.5965 
2 0.7070 0.7780 0.7069 0.6324 
5 0.1407 0.1290 0.1549 0.1423 
10 0.0384 0.0355 0.0418 0.0388 
20 0.0098 0.0091 0.0107 0.0099 

 
Fig.12. Variation of dimensionless natural frequency w.r.t ‘a/h’ values. 

 

7.2 Uniaxial Buckling Load 
The buckling load obtained using Reddy’s TSDT has been val-
idated. The result is made dimension-less using following ex-
pression, 
 
 
 

where ‘N’ is the dimension-less natural frequency, ‘Ncr’ is 
the natural frequency, ‘h’ is the plate thickness and ‘Ec’ is the 
young’s modulus of the ceramic material. 
 

Table.7. dimensionless uniaxial buckling load for different power 
exponent ‘n’ for different homogenization schemes. 

 
n V-FGM M-FGM S-FGM E-FGM 
0 0.1180 0.1180 0.0698 0.0459 

0.5 0.0783 0.0596 0.0654 0.0459 
1 0.0606 0.0473 0.0606 0.0459 
5 0.0372 0.0327 0.0505 0.0459 
10 0.0330 0.0293 0.0491 0.0459 
50 0.0258 0.0241 0.0485 0.0459 
∞ 0.0217 0.0217 0.0484 0.0459 

 
Fig.13. Variation of dimensionless uniaxial buckling load w.r.t ‘n’ 

values. 
 

Table.8. dimensionless uniaxial buckling load for different aspect ratios 
‘a/b’ for different homogenization schemes. 

 
a/b V-FGM M-FGM S-FGM E-FGM 
0.5 0.0195 0.0165 0.0228 0.0192 
1 0.0467 0.0391 0.0552 0.0459 

1.5 0.0842 0.0673 0.1035 0.0825 
2 0.1148 0.0887 0.1459 0.1123 

2.5 0.1360 0.1017 0.1771 0.1328 
3 0.1514 0.1131 0.1997 0.1478 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 11, November-2017                                                                                           140 
ISSN 2229-5518  
 

IJSER © 2017 
http://www.ijser.org  

Fig.14. Variation of dimensionless uniaxial buckling load w.r.t ‘a/b’ 
values. 

 
Table.9. dimensionless uniaxial buckling load for different side-
thickness ratios ‘a/h’ for different homogenization schemes. 

 

a/h V-FGM M-FGM S-FGM E-FGM 

1 0.1883 0.1390 0.2518 0.1829 

2 0.1360 0.1017 0.1788 0.1327 

5 0.0467 0.0391 0.0552 0.0459 

10 0.0134 0.0115 0.0155 0.0131 

20 0.0035 0.0030 0.0040 0.0034 
 

 
Fig.15. Variation of dimensionless uniaxial buckling load w.r.t ‘a/h’ 

values. 
 
 

7.3 Biaxial Buckling Load 
The buckling load obtained using Reddy’s TSDT has been val-
idated. The result is made dimension-less using following ex-
pression, 
 
 
 

where ‘N’ is the dimension-less natural frequency, ‘Ncr’ is 
the natural frequency, ‘h’ is the plate thickness and ‘Ec’ is the 
young’s modulus of the ceramic material. 

 
Table.10. dimensionless biaxial buckling load for different power 

exponent ‘n’ for different homogenization schemes. 
 

n V-FGM M-FGM S-FGM E-FGM 
0 0.0590 0.0590 0.0350 0.0229 

0.5 0.0391 0.0298 0.0327 0.0229 
1 0.0303 0.0236 0.0303 0.0229 
5 0.0186 0.0164 0.0252 0.0229 
10 0.0165 0.0147 0.0245 0.0229 
50 0.0129 0.0120 0.0242 0.0229 
∞ 0.0109 0.0109 0.0242 0.0229 

 
Fig.16. Variation of dimensionless biaxial buckling load w.r.t ‘n’ values. 
 
Table.11. dimensionless biaxial buckling load for different aspect ratios 

‘a/b’ for different homogenization schemes. 
 

a/b V-FGM M-FGM S-FGM E-FGM 

0.5 0.0156 0.0132 0.0182 0.0153 

1 0.0233 0.0195 0.0276 0.0229 

1.5 0.0344 0.0283 0.0412 0.0337 

2 0.0467 0.0377 0.0568 0.0458 

2.5 0.0589 0.0468 0.0729 0.0577 

3 0.0701 0.0549 0.0881 0.0687 
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Fig.17. Variation of dimensionless biaxial buckling load w.r.t ‘a/b’ 
values. 

 
Table.12. dimensionless biaxial buckling load for different side-
thickness ratios ‘a/h’ for different homogenization schemes. 

 

a/h V-FGM M-FGM S-FGM E-FGM 

1 0.1227 0.0910 0.1632 0.1196 

2 0.0781 0.0774 0.0991 0.0764 

5 0.0233 0.0195 0.0276 0.0229 

10 0.0086 0.0057 0.0077 0.0066 

20 0.0017 0.0015 0.0020 0.0017 
 

 
 

Fig.18. Variation of dimensionless biaxial buckling load w.r.t ‘a/h’ 
values. 

 
 

8 CONCLUSION AND FUTURE SCOPE 
The following points can be concluded from the conducted 

comparative studies.  
1. Among the various homogenization schemes used Expo-

nential function is independent of power exponent ‘n’ 
values and hence E-FGM model gives a constant value for 
both natural frequencies and buckling loads when plotted 
for different ‘n’ values. 

2. Both natural frequency and buckling loads decreased with 
increasing ‘n’ value as the metallic nature is increasing, 
that makes the plate more flexible. 

3. Both natural frequency and buckling loads increased as 
‘a/b’ ratio increased, as the plate would become smaller 
and smaller thus less flexible. 

4. Both natural frequency and buckling loads decreased with 
increase in ‘a/h’ ratio as the plate is behaving like a thin 
plate. 

5. The results for both natural frequency and buckling loads 
calculated using different homogenization schemes tends 
to converge as the ‘a/h’ ratio increases as the plate is be-
having like thin plates. 

6. Sigmoid function showed small variation w.r.t ‘n’ value 
than other methods. This is clear from the plots for both 
natural frequency and buckling loads that S-FGM model 
shows a gradual variation than E-FGM and V-FGM mod-
el. 

7. E-FGM and V-FGM models give similar results for both 
natural frequency and buckling loads when plotted for 
different ‘a/h’ and ‘a/b’ ratios. 

8. S-FGM gives the upper-bound results while Mori-Tanaka 
gives the lower-bound. 

9. V-FGM and M-FGM gives same results for both n= 0 (fully 
ceramic) and n= ∞ (fully metallic) for both natural fre-
quency and buckling loads. 

10. V-FGM and M-FGM gives results closer to the 3d solution 
with Mori-Tanaka Scheme being the better method how-
ever being a bit complex compared to Voigt scheme. 

Some areas for future study includes following points: 
1. The present study was conducted for only one boundary 

condition, i.e. all around simply supported, this can be ex-
tended for other boundary conditions also.  

2. Thermal environment may be imposed in addition to the 
mechanical loading.  
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